
Advanced Mathematical Models & Applications

Vol.9, No.1, 2024, pp.5-13

https://doi.org/10.62476/amma9105

A STUDY ON THE INVESTIGATION OF THE TRAVELING WAVE
SOLUTIONS OF THE MATHEMATICAL MODELS IN PHYSICS
VIA (m+ (1/G′))-EXPANSION METHOD
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Abstract. The Gardner equation models the propagation of dust ion acoustic waves. As a result, it has received

extensive attention in the literature. For the first time, the (m + (1/G′))-expansion method is used to establish

novel exact wave solutions for the Gardner equation. Solutions can exhibit various types of behavior, which can be

visualized using 3D and contour graphs. The results obtained demonstrate that the presented method is powerful,

useful, practical, and suitable for examining the model.
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1 Introduction

Nonlinear partial differential equations are essential as they can be used in many field scales. For
example, it helps to model nonlinear wave phenomena that occur in fields such as hydrodynamics
Sohail (2021); Wang et al. (2021), plasma physics Ali et al. (2021); Wang et al (2021), biomedical
Attia et al (2021); Wang (2020), vibration Wang (2021), and optics Li, Ma (2020). This way,
these waves and their inherent characteristics are better understood with other references. In
this study, we aim to examine the Gardner equation Wang (2022).

ut + auux + bu2ux + cuxxx = 0 (1)

The Gardner equation belongs to the integrable, nonlinear partial differential equations
category. This equation was first proposed by the famous mathematician Clifford Gardner in
1968. Because this equation can be generalized to the KdV equation, it is sometimes called the
modified KdV equation. This equation is used in many application areas, such as hydrodynamics,
plasma physics, and quantum field theory. Equation 1 models the propagation of dust ion
acoustic waves for two temperature ions with isothermal electrons industry plasmas (Srivastava
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et al., 2021; Aliev et al., 2012; Velieva & Agamalieva, 2017). The extended tanh method was
used to find the traveling wave solution Allehiany (2020). The (G′/G, 1/G)-expansion method
and (1/G′)-expansion method was used in Daghan (2016). In Fu, Liu (2004), Riccati equations
were used for soliton solutions. In Betchewe et al (2013), the generalized exponential rational
function and Jacobi elliptical solution methods were used to examine the Gardner equation.
In Wang (2022), solutions were presented using the exp-function method. Up to now, the
(m+ (1/G′))-expansion method has not been used for the Gardner equation. In this study, the
(m+ (1/G′))-expansion method will be used to find the analytical traveling wave solution of the
Gardner equation. As it is understood from the studies, many numerical and analytical methods
have been used to examine this equation. This proves the importance of this equation. Our
primary motivation for writing this article is to identify new solutions to this equation. The aim
of this article is to examine the valuable and unique travelling wave solutions of the Gardner
equation by using the (m + (1/G′))-expansion method. This method is recently developed to
investigate travelling wave solutions to the NPDEs. This method is an extended version of
the classic (1/G′)-expansion method. Specifically, when m = 0 solutions produced in (1/G′)-
expansion method can be obtained. The introduction is given in Section 1. In Section 2 the
(m+ (1/G′))-expansion method is explained. The given method is applied to obtain some exact
soliton solutions in Section 3. A brief conclusion is presented in Section 4.

2 General form of the (m+(1/G’))-expansion method

Consider the nonlinear partial differential equation as the following general form Durur et al
(2020); Ismael et al (2022)

P (u, ux, ut, uxx, utt, uxt, ...) = 0 (2)

where is a polynomial and u = u(x, t). Then, suppose the wave variables take the form ξ =
kx+ ωt. Eq.(2) can be transformed into the nonlinear ODE,

U(u, u′, u′′, ...) = 0 (3)

where prime denotes the derivative with respect to ξ .

Step1
Suppose that the solution of Eq.(2) can be written as a finite power series with the form

u(ξ) =
n∑

i=−n
ai(m+ F )i (4)

where a0, ai(i = ±1, ...∓n) and m are constants. The degree of the power series is determined by
considering the homogeneous balance between a nonlinear term in Eq.(2) and the highest-order
derivative F = 1

G′ which G(ξ) satisfies

G′′ + (λ+ 2mµ)G′ + µ = 0 (5)

Step2
Substitute the solution of Eq.(3) into Eq.(4) and use Eq.(5), then collect all terms in the same
order the (m+F )i to obtain the system of algebraic equations for U, a0, ai(i = ∓1, ...,∓n), λ, µ.

Step3
Solve the obtained system and substitute U, a0, ai(i = ∓1, ...,∓n) and the general solution of
the LODE Eq.(5) in to Eq.(3) to get the exact solution of Eq. 2.
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Remark 1. The solution of the LODE G′′ + (λ+ 2mµ)G′ + µ = 0 is

G = − µξ

λ+ 2µm
− A1

λ+ 2µm
e−(λ+2µm)ξ +A2 (6)

where A1, A2 are constants depending on given boundary conditions. Thus we have

1

G′
=

λ+ 2µm

−µ+ (λ+ 2µm)A1(cosh(λ+ 2µm)ξ) − sinh((λ+ 2µm)ξ)
(7)

(
1

G′
)′ = µ(m+

1

G′
)2 + λ(m+

1

G′
) −m(λ+ µ)

3 Applications of the (m+(1/G’))-expansion method

In this chapter, we apply of the (m + (1/G′))-expansion method to obtain the exact solutions
for Garder equations. To apply the (m+ (1/G′))-expansion method, we introduce the following
transformation:

u(x, t) = U(ξ), ξ = kx+ ωt (8)

Substituting Eq.(8) into Eq.(1) we have,

6ωU + 3dkU2 + 2bkU3 + 6ck3U ′′ = 0 (9)

where U ′′ = d2U
dξ2

.

By taking the balance between u′′ and u3, we obtain n = 1. When we enter the value of balance
into Eq.(9), we get

u(ξ) = a−1(m+ F )−1 + a0 + a1(m+ F ) (10)

Following Step 2 in the algorithm of method yields the following algebraic system,(
m+

1

G′

)−3
:12ck3m2(λ+mµ)2a−1 + 2bka3−1 = 0,

(
m+

1

G′

)−2
: − 18ck3mλ(λ+mµ)a−1 + 3dka2−1 + 6bka2−1a0 = 0,

(
m+

1

G′

)−1
:6ck3λ2a−1 − 12ck3mλ(λ+mµ)a−1 + 6ωa−1 + 6dka−1a0+

6bka−1a
2
0 + 6bka2−1a1 = 0,

(
m+

1

G′

)0

:6ck3λµa−1 + 6ωa0 + 3dka20 + 2bka30 − 6ck3mλ(λ+mµ)a1+

6dka−1a1 + 12bka−1a0a1 = 0,

(
m+

1

G′

)1

:6ck3λ2µa1 − 12ck3mλ(λ+mµ)a1 + 6ωa1 + 6dka0a1 + 6bka20a1+

6bka−1a0a
2
1 = 0,

(
m+

1

G′

)2

:18ck3λµa1 + 3dka21 + 6bka0a
2
1 = 0,
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(
m+

1

G′

)3

:12ck3µ2a1 + 2bka31 = 0.

Solving the system of algebraic equations, we discuss the following cases;

Case 1:

a−1 = −6m(λ+mµ)ω

dk(λ+ 2mµ)
, a0 = − (6mµω)

dkλ+ 2dkmµ
, a1 = 0, b =

d2k

6ω

c = − ω

k3(λ+ 2mµ)2
.

(11)

we can obtain the following soliton solution

u(x, t) = − 6A1m(λ+ 2mµ)ω

dk(e(λ+2mµ)(kx+tω)(λ+mµ) +A1m(λ+ 2mµ))
(12)

(a) (b)

Figure 1: 3D and contour graph of traveling wave solution when λ = 0.008,m = −0.1, µ = 0.1, k =
0.2, A1 = 0.3, d = 5, ω = 2

Case 2:

a−1 = −6mλ(λ+mµ)ω

dk(λ+ 2mµ)2
, a0 = − (6λ2ω)

dk(λ+ 2mµ)2
, a1 = − (6λµω)

dk(λ+ 2mµ)2
, b =

d2k(λ+ 2mµ)

6ω

c = − ω

k3(λ+ 2mµ)2
.

(13)
we can obtain the following soliton solution

u(x, t) =
6A1λ( 1

e(λ+2mµ)(kx+tω)µ−A1(λ+2mµ)
+ m

e(λ+2mµ)(kx+tω)(λ+mµ)+A1m(λ+mµ)
)ω

dk
(14)
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(a)
(b)

Figure 2: 3D and contour graph of traveling wave solution when λ = 0.2,m = 0.1, µ = 0.5, k =
0.02, A1 = 0.3, d = 0.5, ω = 0.5

Case 3:

a−1 =
3m(λ+mµ)(k3λ2ω − ζ)(k3(λ2 − 32mλµ− 32m2µ2)ω)3ζ

(2dk7λ(λ+ 2mµ)2(λ2 − 32mλµ− 32m2µ2)ω)

a0 =
12mµ(λ+mµ)k3(λ2 − 32mλµ− 32m2µ2)ω + 3ζ

(dk4λ(λ+ 2mµ)2(−λ2 + 32mλµ+ 32m2µ2))
, c =

ω(1 − (3k3λ2ω))

2k3(λ+ 2mµ)2
ζ

a1 =
3µ(−k3λ2ω + ζ)(k3(λ2 − 32mλµ− 32m2µ2)ω) + 3ζ

(2dk7λ(λ+ 2mµ)2(λ2 − 32mλµ− 32m2µ2)ω)

b =
d2(−k3(λ2 − 32mλµ− 32m2µ2)(λ2 + 8mλµ+ 8m2µ2)ω) + (λ2 − 8mλµ− 8m2µ2)ζ

1536k2m2µ2(λ+mµ)2ω2
.

(15)

where ζ =
√
k6λ2(λ2 − 32mλµ− 32m2µ2)ω2 we can obtain the following soliton solution

u(x, t) =(
1

2dk7(λ+ 2mµ)2
3k3(λ2 − 32mλµ− 32m2µ2)ω + 3ζ)

(
8k3mµ(λ+mµ)

−λ2 + 32mλµ+ 32m2µ2
+

m(λ+mµ)(k3λ2ω − ζ)

λ(λ2 − 32mλµ− 32m2µ2)ρ(x, t)ω
+

µρ(x, t)(−k3λ2ω + ζ)

λ(λ2 − 32mλµ− 32m2µ2)ω
)

(16)

where ρ(x, t) = m+ 1
A1e−(λ+2mµ)(kx+tω)− µ

λ+2mµ

.

(a) (b)

Figure 3: 3D and contour graph of traveling wave solution when λ = −1,m = 0.5, µ = 0.7, k =
−0.2, A1 = 9, d = 1, ω = 1
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Case 4:

a−1 = −6c1/3mλ(λ+mµ)ω2/3

d(λ+ 2mµ)4/3
, a0 =

(61/3λ2ω2/3)

d(λ+ 2mµ)4/3
, a1 =

(6c1/3λµω2/3)

d(λ+ 2mµ)4/3
, b = −d

2(λ+ 2mµ)4/3

6c1/3λ2ω2/3

k = − ω1/3

c1/3(λ+ 2mµ)2/3
.

(17)

we can obtain the following soliton solution

u(x, t) =
6A1c1/3eκ(x)+t(λ+2mµ)ωλ(λ+ 2mµ)5/3ω2/3

d(−et(λ+2mµ)ωµ+A1eκ(x)(λ+ 2mµ)et(λ+2mµ)ω(λ+mµ)+A1eκ(x)m(λ+2mµ)
(18)

where κ(x) = x(λ+2mµ)1/3ω1/3

c1/3

(a) (b)

Figure 4: 3D and contour graph of traveling wave solution when λ = 0.02,m = 0.5, µ = −0.01, k =
0.2, A1 = 0.9, d = 0.05, ω = 0.05

Case 5:

a−1 = −
6m(λ+mµ)

√
− cd2λ2ω4/3

(−c(λ+2mµ)2)1/3

d2λ
, a1 = 0, k =

ω1/3

(−c(λ+ 2mµ)2)1/3

a0 =
3(−d(−c(λ+ 2mµ)2)1/3ω2/3 +

√
− cd2λ2ω4/3

(−c(λ+2mµ)2)1/3
)

d2
, b =

d2

6(−c(λ+ 2mµ)2)1/3ω2/3

.

(19)

we can obtain the following soliton solution

u(x, t) =
6m(λ+mµ)

√
− cd2λ2ω4/3

ν

d2λ(m+ 1

A1e(−λ−2mµ)(xω
1/3
ν +tω)

− µ
λ+2mµ)

−
3(dν)ω2/3 +

√
− cd2λ2ω4/3

ν

d2
(20)

where ν = (−c(λ+ 2mµ)2)1/3
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(a)
(b)

Figure 5: 3D and contour graph of traveling wave solution when λ = 0.01,m = 0.005, µ = 0.01, k =
−0.000002, A1 = 0.5, d = 0.01, ω = 0.0005

4 Result and Discussion

In this paper, the travelling wave solutions for the Gardner equation have been studied. Exact
solutions for a suggested equation are constructed by using (m + (1/G′))-expansion method.
Solutions are drawn to understand the physical phenomena of the Gardner equation. We have
presented three-dimensional and contour graphs of the solutions to improve understanding of
the characteristics of the traveling wave solutions. Figure 1 represents the 3D and contour graph
of traveling wave solution in Case 1 which have been plotted for the values λ = 0.2,m = 0.1, µ =
1/2, k = 0.02, A1 = 0.3, d = 0.5, ω = 0.5. This type of solution is a traveling wave solution
with real structure. The three dimensional and contour graphs of soliton solution are plotted in
Figure 2 for the values λ = 0.008,m = −0.1, µ = 0.1, k = 0.2, A1 = 0.3, d = 5, ω = 2. In Case
3, a different soliton solution has been obtained with the help of the selection of coefficients.
The three dimensional and contour graph of this solution are plotted in Figure 3 for the values
λ = −1,m = 0.5, µ = 0.7, k = −0.2, A1 = 9, d = 1, ω = 1. In Case 4 the real soliton solution has
been obtained. Its three dimensional and contour graph are plotted in Figure 4 for the values
λ = 0.02,m = 0.5, µ = −0.01, k = 0.2, A1 = 0.9, d = 0.05, ω = 0.05. The solution in Case 5, in
a real form. Its graph has been plotted in Figure 5 for the λ = 0.01,m = 0.005, µ = 0.01, k =
−0.000002, A1 = 0.5, d = 0.01, ω = 0.0005. The given results could be helpful in explaining the
physical meaning of different nonlinear models.

5 Conclusion

This article examines the application of the (m + (1/G′))-expansion method to the Gardner
equation to generate the traveling wave solutions. This approach is an effective technique that
can be applied to nonlinear-type equations. Fully propagated wave solutions are obtained as
bright solitary, bright-dark solitary, and periodic wave solutions. For more understanding of
the physical phenomena of the obtained solutions, they are plotted in 3D and contour graphics.
The results in this article show that the (m + (1/G′))-expansion method is concise, efficient,
and can offer different forms of traveling wave solutions. It shows that it can be used better to
understand the complex physical phenomena in the field. We note that all the solutions obtained
confirm the given equation when directly substituted.
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